The Radiative Properties and Thermal Effects of Ash Clouds and Deposits In Pulverised Fuel Fired Furnaces

by

Sankar Prasad Bhattacharya

A thesis submitted for the Degree of

DOCTOR OF PHILOSOPHY

Department of Chemical Engineering The University of Newcastle January 1995 I hereby certify that the work embodied in this thesis is the results of original research and has not been submitted for a higher degree to any other University or Institution

Sankar Prasad Bhattacharya

Acknowledgments

The author expresses his gratitude to Prof. Terry Wall for providing valuable guidance during the pursuit of this study. His comments and criticisms have always been inspiring and his encouragement towards free thinking, allowing one the flexibility in developing research plans made the work a pleasant experience.

Several others assisted in the present work allowing the use of their experimental set-up and providing data from their research. Dr. Tony Vassallo and Dr. Kim Finnie (presently in ANSTO) of CSIRO Div. of Coal and Energy Technology, Dr. Joachim Kuhn of the University Würzberg - Germany, Dr. Ken Doolan of BHP-CRL, Newcastle Laboratories, and Mr. Ron Hunter of the Dept. of Fine Arts allowed the use of their equipments. Dr. Larry Baxter of the Sandia National Laboratories, Prof. T. Makino of Kyoto University, Prof. Sidney Self of Stanford University, Prof. R. O. Buckius of University of Illinois, Dr. Peter Solomon and Dr. M. J. Markham of Advanced Fuel Research, USA, and Dr. Koichi Nichikida of Perkin-Elmer, USA supplied their experimental data on request. The author gratefully acknowledges all of them.

The author also acknowledges the help and suggestions from Dr. R. P. Gupta and Andrew Beath and Gary Bryant for going through the manuscript.

Finally sincerest thanks go to my wife Mita for her patience and support during the course of the study. Also acknowledged is the constant encouragement from relations back home, especially my mother and parents-in-law.

Table of Contents

Chapter	Title	
	Acknowledgements	iii
	Table of Contents	iv
	Abstract	xi
Chapter 1	Introduction to the Study and Outline of the samples Use	d 1
1.1	Background	1
1.2	Objective of the Study	2
1.3	Organisation of the Study	3
1.4	Outline of the Samples Used	4
Chapter 2	Definitions of the Optical and Radiative Properties of	6
	Particles, Particle Clouds, Deposits and Slags	
2.1	Introduction	6
2.2	Radiative Properties of Single Particles	6
2.3	Radiative Properties of a Particle Cloud	12
	2.3.1 Classification of Scattering	12
	Single/multiple scatter	
	Independent/dependent scatter	
	2.3.2 Uniform sized particles	13
	2.3.3 Non-uniform sized particles	15
	2.3.4 Particle Size Distribution Considered in the Present Work	16
	2.3.5 Total radiative properties of particle cloud	17
2.4	Radiative Properties of Deposits	18
2.5	Total Properties	
2.6	Radiative Transfer in Plane Parallel Geometry	
2.7	Summary	23
Chapter 3	Review of the Literature Related to the Optical Propertie	s 24
_	of Coal, Char and Ashy Products of Combustion	
3.1	Introduction	24
3.2	Optical Constants : Definition and Practical Significance	24
3.3	Techniques of Measuring Real and Absorption Index	25

	3.3.1	Light Scattering technique	25
	3.3.2	Transmission technique	26
	3.3.3	Reflection technique	26
		normal reflectance	
		diffuse reflectance	
		attenuated total reflectance	
	3.3.4	Integrating plate technique	29
	3.3.5	Photoaccoustic technique	29
	3.3.6	Emission technique	30
	3.3.7	The Kramers-Kronig relations	30
		K-K relations and normal reflectance measurement	
		K-K relations and absorption index measurement	
	3.3.8	The Oscillator Fitting technique	32
	3.3.9	Particle Extinction technique	33
	3.3.10	Mixture Rule for determining n and k	36
	3.3.11	Summary of the techniques	36
3.4	Optica	al Constants of Non-uniform Particles :	38
	Effect	ive Medium Theory	
3.5	Optica	al Constants of Coal	39
3.6	Optica	al Constants of Char	45
3.7	Optica	al Constants of Fly Ash	46
3.8	Optical Constants and Absorption Bands of Oxides		54
	and Sa	alts Present in Ash and Ash Deposits	
3.9	Concl	usions and Implications for the present study	60
Chapter 4		A Theoretical Investigation of the Influence of Optical	62
-		Properties on the Radiative Properties and Heat Transfer	
		Involving Ash Clouds and Deposits	
4.1	Introd	luction	62
4.2	Input	Parameters	63
4.3	Calcu	lations	64
4.4	Results		
	4.4.1	Absorption and Scatter Efficiency of a Particle Cloud	66
		Effect of Real Index	
		Effect of Absorption Index	
		Effect of Size	
	4.4.2	Hemispherical Emittance of an Opaque Slab of Particles	67

	Effect of Real Index	
	Effect of Absorption Index	
	Effect of Size	69
	4.4.3 Hemispherical Emittance of a Smooth Opaque Deposit	69 70
	4.4.4 Hemispherical Emittance of a 3m Wide Slab of Particle Cloud	70
	Effect of Real Index	
	<i>Effect of Absorption Index / size distribution</i> 4.4.5 Heat Transfer Calculation	70
	<i>Effect of Real / Absorption Index</i>	70
	Effect of wall emittance (spectral / grey)	
4.5	Conclusions	74
4.5	Implications for the Present Study	74 75
4.0	Implications for the Present Study	75
Chapter 5	Experiments to Determine the Optical Properties, in	96
C 1	Particular the Spectral Absorption Index	0.6
5.1	Introduction	96 06
5.2	Choice of Techniques	96 06
	5.2.1 Angular Scatter Measurement	96
	5.2.2 The KBr Transmission Spectra Technique	99 10c
5.3	5.2.3 Selection of the Technique	106
5.5	Sample Preparation 5.3.1 Synthetic Ash	106
		107 107
5.4	5.3.3 Coal, Char and Ash Samples Transmission Measurement	108
5.4		111 111
	5.4.1 Grinding of the Samples5.4.2 Particle Size Measurement	111
		112
5.5	5.4.3 Pelletisation of the Samples Results	115
5.5	5.5.1 Measurements on Pure Oxides and Salts	115
	5.5.2 Absorption Index of Coal	113
	5.5.3 Absorption Index of Char	119
	5.5.4 Absorption Index of Ash : without unburnt carbon	119
	5.5.5 Absorption Index of Ash : with unburnt carbon	120
	5.5.6 Evolution of Absorption Index with Burnout	120
5.6	Effects of Unburnt Carbon and its Distribution in Ash	121
2.0	5.6.1 Effect on Single Particle Emissivity	121

	5.6.2	Effect on Radiative Heat Transfer	123
	5.6.3	Effect of Unburnt carbon Distribution	124
5.7	Concl	usions and Implications for Further Study	126
Chapter 6		The Radiative and Conductive Properties and Thermal	156
		Effects of Ash Deposits in Furnaces	
6.1	Introd	uction	156
6.2	Mecha	anism of Heat Transfer To and Through Ash Deposits	156
	6.2.1	The Radiative Properties	157
	6.2.2	Significance of Spectral Effects for Particulate Ash Deposits	158
	6.2.3	The Conductive Properties	158
	6.2.4	Physical and Chemical Character of Deposits	159
	6.2.5	Terminology Used in the Chapter	159
6.3	Deper	ndent and Independent Effects	160
	6.3.1	Independent Effects	160
	6.3.2	Dependent Effects	160
	6.3.3	Demarcation Between Independent and Dependent Effects	161
	6.3.4	Studies on Dependent Effects	161
	6.3.5	Discussion and Implications for the Present Study	164
6.4	Exper	imental Radiative Properties	165
	6.4.1	Experimental Techniques and Conversion to Total Properties	165
	6.4.2	Observations of Variations of Emittance with Physical and	165
		Chemical Properties	
6.5	Mode	ls for Prediction of Spectral Emittance	167
		2-flux technique	
		Discrete Ordinate technique	
	6.5.1	Association of Scatter with Reflection and Emission from particula	ate
		Layers	168
	6.5.2	Isothermal Particulate Deposit	169
		Effect of Particle Size	
		Effect of Composition	
		Comparison of the predictions from the two techniques	
	6.5.3	Emittance of an Opaque Deposit Having an Optically Smooth Sur	face
		Effect of Composition and Temperature	
	6.5.4	Emittance and Its Dependence on Physical Character of Deposits	172
	6.5.5	Summary of the Predictions	172
6.6	Comp	parison of Predictions with Measurements for Particulate Deposits	174
	6.6.1	With Spectral Emittance of Alumina	174

•

	6.6.2	With Spectral Emittance of Silica	174
	6.6.3	With Spectral Emittance of Deposits	174
	6.6.4	With total Emittance of Deposits	175
6.7	Mode	l Predictions for Effective Emittance of a Non-Isothermal Deposit	176
		Deposit heated from top	
		Deposit heated from bottom	
		Calculation Details	
		Discussions	
6.8	Trans	parency of Ash Deposits : Effect of Deposit Thickness	181
6.9	9 The Conductive Properties		
	6.9.1	Deposit Properties and The Measurements of Thermal Conductivity	ity182
	6.9.2	Effective Thermal Conductivity of Particulate, Sintered and	183
		Solid Ash Deposits	
	6.9.3	Thermal Conductivity of Oxides and Oxide Mixtures and Coal	183
		Ashes	
	6.9.4	Effect of Temperature	184
	6.9.5	Effect of composition	185
	6.9.6	Effect of Porosity and Particle Size	186
6.10	Illustr	ative Magnitudes of the Effects of Radiative and Conductive	186
	Prope	rties on Furnace Performance	
6.11	Chang	ges in Deposit Properties During Formation	188
6.12	Concl	usions and Implications for The Present Study	190
pter 7		Radiative Measurements of Coal, Char, and Ash	226
-		Deposits	
7.1	Introd	luction	226
7.2	Spect	ral Emittance Measurement of Coal, Char and Ash Particles	227
	7.2.1	Description of the Experiment Set-Up	227
	7.2.2	Experiment Procedure	228
	7.2.3	Calculation Procedure	229
	7.2.4	Spectral Emittance of Slag Particles	230
	7.2.5	Spectral Emittance of Coal Particles	231
	7.2.6	Spectral Emittanceof Char Particles	233
	7.2.7	Spectral Emittance of Burnt Ash and Slag Particles	234
	7.2.8	Estimation of Error	234
7.3	Real 7	Fime Emission Measurements During Ash Deposition	238
	7.3.1	Description of the Set up and experiment procedure	238

Cha

viii

	7.3.2	Experimental Conditions	239	
	7.3.3	Coal Properties	239	
	7.3.4	Experimental results	239	
	7.3.5	Total Emissivities and Absorptivities	242	
	7.3.6	Comparison with Theoretical predictions	242	
7.4	Depen	dent Effects : hemispherical Reflection and Transmission	244	
	Measu	rements of Deposits		
	7.4.1	Objective of the Experiments	244	
	7.4.2	Description of the Set Up	244	
	7.4.3	Properties of the Particles Used	245	
	7.4.4	Experimental conditions	246	
	7.4.5	Experimental Results	246	
	7.4.6	Comparison with Theoretical predictions	247	
7.5	Conclu	isions	249	
Chapter 8		Conclusions and Recommendations	274	
8.1	Major	Contributions and conclusions	274	
	8.1.1	On the Optical Properties of Solids Suspended In Coal	274	
		Fired Furnaces		
	8.1.2	On the Radiative Properties of Deposits	275	
	8.1.3	Influence of Radiative and Conductive Properties on Furnace	275	
		Performance		
	8.1.4	Practical Significance of the Present Study	275	
8.2	Conclu	usions from Literature Review on the Theory of Radiative properties	276	
8.3	Conclu	usions from the Literature Review on Optical Constants	276	
8.4	•		277	
	Spectr	al Optical Properties on radiative Transfer		
8.5	Selection of Technique and Measurements of Absorption Index of 27			
	Comb	ustion particulates		
8.6	Conclusions on the Predictions on Spectral Emittance of Particulate 2			
	Depos	its, Thermal effects and Furnace Performance		
	8.6.1	Emittance Predictions of Isothermal layers	280	
	8.6.2	Particulate Layers with Temperature Gradients	281	
	8.6.3	Transparency of ash Deposits	281	
	8.6.4	Conduction Coefficient	282	
	8.6.5	Variation of Properties Dusring Deposition	282	
	8.6.6	Effect of Radiative and Conductive Properties on Furnace	282	
		Performance		

		8.6.7 Role of Dependent Effects	282
	8.7	Conclusion from the Radiative properties Measurements of Coal, Char and Ash Deposits	283
	8.8	Recommendations for further research	284
	Refe	References	
	Publications		
	List	of Appendices	296
I		Radiative Properties of Single Particle	296
II		Radiative Properties of Smooth Surfaces	302
III		The Discrete Ordinate Method for Radiative Transfer Calculation	305
		in One Dimensional Media and Calculation of Spectral Emittance of	
		Ash Deposits and Ash Clouds	
IV		SEM Photographs of Ground particles Used in Making Pellets	312
V		Spectral Discrete Ordinate Method for Heat Transfer in Presence of Ash and Absorbing Gases	313
VI		Estimation of Uncertainties in the calculation of spectral Emittance	315
	C		1

٠

Corrections

See endpapers

Abstract

A theoretical and experimental study was undertaken on the radiative properties of solids suspended in furnace gases and those of the solid deposits formed on the furnace wall during pulverised coal combustion. Experiments included measurement of the absorption indices of coal, char, ash and slag particles, and the emittance of their deposits, both real time and exsitu, to assess the effects of particle size, physical state, iron and unburnt carbon (UC), devolatilisation and heating. Theoretical studies included formulation of mathematical models for spectral radiative heat transfer involving particulates and gases, and for the spectral emittance of opaque and semi-transparent ash deposits. These codes considered both isothermal and non-isothermal fields, particle size, composition and concentration variables and evaluation of the effect of UC on radiative heat transfer and emittance of ash clouds.

A technique was proposed to measure the absorption index of the particulate samples. The technique, after calibration with known samples, was applied to three different coal samples, char prepared from each of these at several burnout levels, and fully burnt ash from each of these. In ash samples, the level of UC had a significant effect on the absorption index. Using these data the evolution of total emissivity of single coal particles with burnout was examined. A marked increase in emissivity was predicted during the initial stages of burnout followed by a decrease during the later stages. The effect of UC on net heat transfer across a plane parallel slab of particles was examined. Rapid decrease was observed up to 10% UC content, after which the rate of decrease was predicted to decrease. The effect of UC distribution in ash was examined qualitatively by calculating the hemispherical emittance of a slab of flyash particulates considering two cases: all particles have the same UC content, or the UC content was concentrated only in the large particles. The significant difference in emittance between the two cases suggest that it is not sufficient to specify only the bulk UC content of the flyash, rather how the UC is distributed relative to the particle size.

A model was developed to predict the spectral normal and hemispherical emittance of opaque and semi-transparent particulate deposits. A significant effect of particle size and composition on spectral emittance of particulate deposits was predicted. The presence of large particles and particles having high iron content were found to make deposits more emissive at wavelengths up to 5 μ m. Calculations indicate that the apparent emittance of a non-isothermal deposit could be significantly different from the isothermal emittance if there is a substantial temperature gradient across it and the material is weakly absorbing. Results of calculations performed for two types of deposits (one heated from bottom and the other heated from top), indicate that care must be taken in experimental design and data

interpretation for accurate prediction of emittance from such measurements. The approximate thickness required for opacity (1% transmission) of ash deposits was calculated using the model developed and found to vary between 80 μ m and 1 mm depending on the type of material and particle size in the deposit, consistent with measurements reported in literature. The emittance of smooth slag layers was predicted to be of grey character, insensitive to both the real and the absorption index and exceed 0.9, a value supported by recent published measurements.

Speculations on the variation in the deposit properties as they build are presented with results of preliminary experiments to examine these speculations. Calculations were performed to assess the effects of conductive and radiative properties on exit gas temperature, wall flux and efficiency of a power station furnace. For a moderately reflective layer, both these effects are found to be significant whereas for unreflective deposits, conductive effects are found to be more significant. Comparison with an industrial measurement supported the predicted effects.

Spectral emittance measurements using slag particles showed the effect of particle size being limited primarily to the wavelengths below 6 μ m, supporting model predictions. Heating of the particles at temperatures above 1000°C resulted in higher emittance values. At a particular temperature, emittance measured during the cooling cycle was found to be higher than the emittance measured during the heating cycle indicating possible irreversible structural transformations. Spectral emittance measured on slag particles having different iron contents indicated the effect to be limited to wavelengths below 5 μ m with particles having higher iron content recording higher emittance. Spectral emittance measured on particles of muffle burnt ash and the particles of the same ash after melting to a slag showed differences with the slagged ash recording significantly higher emittance. The effect of devolatilisation emittance increases to about 0.85 before decreasing to values about 0.7 with char combustion. Spectral emittance of char samples was measured as a function of ash content with char having lower ash content recording higher emittance.

Few studies have reported the importance of the inclusion of dependent effects in radiation calculations on the emittance of ash deposits. All studies are limited to either very small particles or very large particles and the experiments are either transmission or reflection measurements. Measurements were conducted using particle sizes relevant to radiative heat transfer in furnaces, and also involving *two* independent sets of measurements, transmission and reflection, on the same sample. Measured emittances were significantly higher than the values predicted assuming independent effects only thus showing the importance of

dependent effects. Additional experiments using a wider range of samples and particle sizes are recommended to quantify the extent of dependent effects.

The study provides the theoretical and experimental confirmation of the difference in nature between the spectral emittance of particulate and slagged deposits and thus show the importance of the physical state on emittance of deposits rather than the chemical composition. The results provide the necessary background for deposit monitoring using pyrometric measurements with consequent effects on the calculation of devolatilisation rates and heat transfer as well as the inclusion of this spectral character in radiative transfer. All the effects (size, dependent, thermal, physical state etc.) on emittance of particulate deposits are found to be limited primarily to the wavelength region below $6 \,\mu\text{m}$.